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Abstract. Soil bulk density (BD) serves as a fundamental indicator of soil health and quality, exerting a significant influence 

on critical factors such as plant growth, nutrient availability, and water retention. Due to its limited availability in soil databases, 

the application of pedotransfer functions (PTFs) has emerged as a potent tool for predicting BD using other easily measurable 

soil properties, while the impact of these PTFs’ accuracy on soil organic carbon (SOC) stock calculation has been rarely 15 

explored. In this study, we proposed an innovative local modelling approach for predicting BD across Europe using the recently 

released BD data from the LUCAS Soil 2018 (0-20 cm). Our approach involved a combination of neighbour sample search, 

Forward Recursive Feature Selection (FRFS) and Random Forest (RF) model (local-RFFRFS). The results showed that local-

RFFRFS had a good performance in predicting BD (R2 of 0.58, RMSE of 0.19 g cm-3), surpassing the traditional PTFs (R2 of 

0.40-0.45, RMSE of 0.22 g cm-3) and global PTFs using RF with and without FRFS (R2 of 0.56-0.57, RMSE of 0.19 g cm-3). 20 

Interestingly, we found the best traditional PTF (R2=0.84, RMSE=1.39 kg m-2) performed close to the local-RFFRFS (R2=0.85, 

RMSE=1.32 kg m-2) in SOC stock calculation using BD predictions. However, the local-RFFRFS still performed better (ΔR2>0.2 

and ΔRMSE>0.1 g cm-3) for soil samples with low SOC stock (<3 kg m-2). Therefore, we suggest that the local-RFFRFS is a 

promising method for BD prediction while traditional PTFs would be more efficient when BD is subsequently utilized for 

calculating SOC stock. Finally, we produced two BD and SOC stocks datasets (18,945 and 15,389 soil samples) for LUCAS 25 

Soil 2018 using the best traditional PTF and local-RFFRFS, respectively. This dataset is archived from the Zenodo platform at 

https://zenodo.org/records/10211884 (Chen et al., 2023).The outcomes of this study present a meaningful advancement in 

enhancing the predictive accuracy of BD, and the resultant BD and SOC stock datasets across the Europe enable more precise 

soil hydrological and biological modelling. 
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1 Introduction 30 

Soil plays a pivotal role in supporting ecosystems and sustaining life on our planet (Rabot et al., 2018). Its physical properties 

are crucial for various disciplines such as agriculture, environmental science, and land management. Among these properties, 

soil bulk density (BD) holds particular significance as it serves as a fundamental indicator of soil health, structure, and water 

holding capacity. BD directly influences vital factors like plant growth, nutrient availability, and overall soil quality (Dam et 

al., 2005; Chen et al., 2018; Schillaci et al., 2021). Additionally, BD plays a crucial role in calculating SOC storage, making it 35 

even more essential in soil studies. Nonetheless, the uncertainty in SOC stock estimates arises due to the variations in methods 

used to substitute for missing BD data (Benites et al., 2007; Dawson and Smith, 2007; Wiesmeier et al., 2012). It is important 

to acknowledge that BD exhibits considerable variations across different geographical regions due to factors like diverse soil 

types, climate conditions, vegetation cover, and land cover patterns (Hollis et al., 2011; Lark et al., 2014; Li et al., 2019). These 

regional disparities underscore the need for a comprehensive understanding of BD in soil research and its implications for 40 

various aspects of ecosystem functioning and management. 

Characterizing the spatial distribution of BD across a diverse and extensive continent like Europe presents a complex challenge 

(Chen et al., 2018; Nasta et al., 2020; Palladino et al., 2022). Traditional soil sampling and laboratory analyses have been time-

consuming, costly, and impractical at a large scale (Makovníková et al, 2017). In response to this challenge, the development 

of pedotransfer functions (PTFs) has emerged as a powerful approach (Van Looy et al., 2017). PTFs are mathematical models 45 

that estimate soil properties, such as BD, based on readily available and easily measurable soil data (e.g., SOC, clay, silt, sand). 

These functions serve as invaluable tools for predicting soil properties at unvisited locations, facilitating regional soil mapping, 

and enhancing our understanding of soil dynamics across vast areas (Chen et al., 2018; Schillaci et al., 2021; Palladino et al., 

2022). Furthermore, the incorporation of globally available covariates, such as topography and land cover, showed a promise 

in enhancing the effectiveness and applicability of PTFs for gap-filling of BD (Ramcharan et al., 2017; Bondi et al., 2018; 50 

Patton et al., 2019). 

In the early stage, PTFs predominantly employed regression techniques due to their simplicity (Gupta and Larson, 1979; Rawls 

and Brakensiek, 1985). However, with advancements in science and technology, a wide range of models have been developed 

for deriving PTFs, particularly for continuous predicted variables. These methods encompass linear regression (LM), 

generalized linear models (GLM), generalized additive models (GAM), regression trees, neural networks, support vector 55 

machines, and random forests (RF) (Van Looy et al., 2017). The utilization of these advanced techniques has substantially 

improved the accuracy of BD prediction (Table 1). 

Table 1: Summary of previous studies on using PTFs for BD prediction 

ID Scale Sample size Model R2 Reference 

1 Landscape 164 
Naive-BN 

Hierarchical-BN 

0.26 

0.42 
Taalab et al. (2015) 

2 National 2,462 MLR 0.41 Katuwal et al. (2020) 
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RF 

RR 

ANN 

0.62 

0.60 

0.61 

3 National 1,357 GBM 0.53 Chen et al. (2018) 

4 Regional 169 
k-NN 

BRT 

0.32 

0.30 
Ghehi et al. (2012) 

5 National 485 GBM 0.67 Jalabert et al., 2010) 

6 Regional 495 
ANN 

MLR 

0.71 

0.63 
Yi et al. (2016) 

7 National 188 

MLR 

MLR-BS 

ANN 

0.21 

0.38 

0.48 

Schillaci et al. (2021) 

MLR, multiple linear regression; RF, random forest; RR, regression rules; ANN, artificial neural networks; GBM, generalized boosted 

models; BRT, boosted regression trees; BN, Bayesian network; k-NN, k-nearest neighbour; MLR-BS, multiple linear regression (stepwise 60 
variable selection) 

 

PTFs have emerged as an alternative approach to address the scarcity of BD data (Van Looy et al., 2017). They have been 

implemented and tested in diverse regions and countries, providing a practical and cost-effective means for predicting BD 

using readily available soil properties. However, it is noteworthy that the majority of previous studies utilizing machine 65 

learning (ML) and PTFs for BD prediction have been conducted at regional or national scales, with limited research focusing 

on the intercontinental scale (Taalab et al., 2015; Shiri et al., 2017; Katuwal et al., 2020). Despite the accomplishments of 

PTFs in BD estimation, a gap emerges when transitioning to global modelling (a fixed model to predict all the unknown 

samples) endeavours. The reliance on global models, while useful in capturing broad patterns, often faces constraints in 

delivering accurate predictions at finer scales (Gupta et al., 2018). These global models may fail to account for the nuanced 70 

spatial and environmental variations that play a pivotal role in determining BD across different landscapes. While numerous 

studies have harnessed ML based PTFs (ML-PTFs) to improve the model performance for BD at national and regional levels, 

the expansion of these methodologies to encompass continental contexts remains relatively limited (Nasta et al., 2020; Schillaci 

et al., 2021; Palladino et al., 2022). This gap underscores the need for a modelling approach that bridges the gap between 

broad-scale global modelling and context-specific requirements of diverse regions and ecosystems. This is where the concept 75 

of local modelling steps in. The local model adopts a dynamic modelling strategy: it firstly selected a part of similar samples 

close to each unknown sample in the predictor space, then it fits a predictive model using the selected similar samples (not the 

whole data). Since the selected similar samples vary for each unknown sample, the corresponding local model is different from 

others. Local modelling strategy enables the consideration of environmental relevance by clustering data under comparable 

environmental conditions, which aids in constructing specialized PTFs that capture soil-environment relationships (Nocita et 80 

al., 2014; Chen et al., 2018). Thus, there is a compelling need for further investigations and developments in local modelling 
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techniques to improving BD predictions. Furthermore, despite of the widely use of PTFs for predicting BD in SOC stock 

calculation from continental to global scales, how the accuracy of PTFs based BD prediction impacts the quality of SOC stock 

remains poorly explored (Cotrufo et al., 2019; Augusto and Boč et al., 2022; Luo et al., 2022; De Rosa et al., 2023). 

To address aforementioned issues, we investigated RF model in combination with variable selection and local modelling 85 

strategy, to evaluate the potential of different PTFs in BD prediction as well as SOC stock calculation. The main objectives of 

this study are as follows: 

 Compare the predictive accuracy of traditional PTFs (T-PTFs) and ML-PTFs for BD prediction; 

 Evaluate the potential of local modelling strategies for BD prediction; 

 Investigate the impact of PTFs-based BD prediction on the accuracy of SOC stocks calculation. 90 

2 Materials and methods 

2.1 Soil data 

The soil data were compiled from the Land Use and Coverage Area Frame Survey Soil (LUCAS Soil) campaigns conducted 

in 2009, 2015 and 2018 (Fernández-Ugalde et al., 2022; Panagos et al., 2022). The survey encompassed a stratified random 

sampling approach, which identified approximately 20,000 soil sampling locations across the European Union and the United 95 

Kingdom for each campaign. At each sampling site (circle of 4 m diameter plot), 5 soil samples (0–20 cm) were collected after 

the removal of the litter layer, and the land cover (LC) was recorded. These samples were then combined into a bulked 

composite soil sample for analysis. Subsequently, all soil samples underwent air-drying and sieving to less than 2 mm. Standard 

laboratory analysis was conducted in a single laboratory, including particle size fractions (clay, silt, sand, %), coarse fragments 

(CF, %), BD (g cm-3), pH (in water), SOC (g kg-1), carbonates (CaCO3, g kg-1), total nitrogen (N, g kg-1), extractable 100 

potassium (K, mg kg-1), cation exchange capacity (CEC, cmol(+) kg-1). For more comprehensive information about LUCAS 

Soil 2009/2015/2018, we refer to Orgiazzi et al. (2022). In the LUCAS Soil 2018 survey, soil sampling was conducted across 

all EU Member States and UK, employing the identical set of 25,947 locations that were targeted during the 2015 survey 

(Fernández-Ugalde et al., 2022). However, due to the absence of particle-size fractions in LUCAS Soil 2018, we resorted to 

use the data from LUCAS Soil 2009/2015 by the unique identifier soil ID (Panagos et al., 2022). To ensure the reliability of 105 

the data, we excluded samples with soil particle fractions recorded as 0. Finally, 5,163 samples were retained for further 

analysis (Fig. 1). 
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Figure 1: Spatial distribution of 5,163 soil samples from LUCAS Soil 2018. 

Since BD was measured for the whole mass (BDsample) and CF was measured for the mass fraction (CFmassfraction) in the 110 

LUCAS Soil 2015/2018, they cannot be used to calculate SOC stock which requires BD of the fine fraction (BDfine) and CF 

calculated by volume fraction (CFvolumefraction) (Poeplau et al., 2017). Therefore, we used a recently released dataset for 

BDfine and CFvolumefraction by (Pacini et al., 2023) based on BDsample and CFmassfraction. Please note that the BD and 

CF mentioned hereafter all refer to BDfine and CFvolumefraction. 

2.2 Predictor variables related to relief and climate 115 

The elevation was derived from Shuttle Radar Topography Mission (SRTM) 1-km Digital Elevation Model (DEM) (Farr et 

al., 2007). Climatic data, including mean annual precipitation (MAP) and average annual temperature (MAT), were acquired 

from the WorldClim Version 2 at 1 km resolution (Fick and Hijmans, 2017). The Global-PET dataset at 1 km resolution was 

used to extract Potential evapotranspiration (PET) and Aridity index (AI) (Zomer et al., 2022). 
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2.3 Traditional PTFs 120 

We evaluated four traditional PTFs (T-PTFs) that have been widely used to estimated BD in previous studies at a broad scale 

(Atwood et al., 2017; Chen et al., 2018; Sun et al., 2020; Tao et al., 2023). The parameters in these T-PTFs were refitted by 

the Levenberg-Marquardt non-linear least-square method available in the minpack.lm R package based on our data (Bates and 

Watts, 1981; Zhu et al., 1997; Elzhov et al., 2015). These refitted parameters of T-PTFs are presented in Table 2. 
Table 2: Summary of four traditional PTFs defined in previous research 125 

Model Function 
Refitted coefficients 

Reference R2 
a b c 

1 𝐵𝐵𝐵𝐵 = 𝑎𝑎 ∗ %𝑆𝑆𝑆𝑆𝑆𝑆𝑏𝑏 1.197 -0.229  Atwood et al. (2017) 0.397 

2 𝐵𝐵𝐵𝐵 =
1

𝑎𝑎 + 𝑏𝑏 ∗ %𝑆𝑆𝑆𝑆𝑆𝑆 0.733 0.0982  Chen et al. (2018) 0.445 

3 𝐵𝐵𝐵𝐵 =
100

%𝑆𝑆𝑆𝑆𝑆𝑆
0.244 − (100 − %𝑆𝑆𝑆𝑆𝑆𝑆)

𝑎𝑎

 1.231   Sun et al. (2020) 0.405 

4 𝐵𝐵𝐵𝐵 = 𝑎𝑎 + 𝑏𝑏 × exp (−𝑐𝑐 × %𝑆𝑆𝑆𝑆𝑆𝑆) 0.348 0.993 0.0882 Tao et al., (2023) 0.445 

BD, bulk density (g cm−3); SOM, soil organic matter (%); SOC, soil organic carbon (%). 

 

2.4 Global ML-PTFs 

To compare with T-PTFs, we used random forest (RF) to construct global ML-PTFs for predicting BD. RF is an ensemble 

learning method that aggregates predictions from multiple decision trees to obtain the final estimates of the target variable. In 130 

growing a decision tree, a random subsample of data is selected from the verification dataset, and a set of random predictor 

variables is used for splitting the subsampled data. Two parameters, ntree and mtry, were optimized by 10-fold cross-validation. 

Here, 16 predictor variables, such as sand, silt, clay, SOC, elevation (Table 3), were used to build the global RF model. 
Table 3: The variables used in RFFull and RFFRFS. For RFFRFS, the order of variables is listed by the descending importance. 

Model Selected predictors Number of predictors 

RFFull clay, silt, sand, pH, SOC, CaCO3, N, K, CEC, AI, PET, Elevation, MAP, MAT, LC 15 

RFFRFS SOC, N, pH, PET, MAP, LC, AI, MAT, ELE, EC, clay, silt 12 

 135 

Furthermore, we adopted a recently proposed variable selection method, namely forward recursive feature selection (FRFS) 

to reduce the number of predictor variables while not losing model performance. FRFS employs a forward selection strategy, 

involving the following sequential steps: (1) initially, a RF model is fitted using all the n predictors, and their variable 

importance is calculated; (2) the most important predictor (only one) is selected to create an initial model, and its performance 
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is assessed using k-fold cross-validation with a single predictor in the pool; (3) subsequently, a series of models are constructed 140 

using two predictors, where the first predictor is chosen from the pool, and the second predictor is selected from the remaining 

predictors. The model performances are evaluated, and the model with the best performance is recorded; (4) the pool of 

predictors is then updated based on the predictors from the best-performing model in the previous step; (5) The process is 

iteratively repeated, progressively increasing the number of predictors from 3 to n. Ultimately, the predictors used in the model 

with the best performance are selected to form the final predictive model, as detailed in the work of Xiao et al. (2022). The R 145 

script for implementing FRFS is accessible at https://doi.org/10.5281/zenodo.7141020. In this study, FRFS was applied to 

select the most relevant predictors constructing the predictive models (Table 3). 

For clarity, in global modelling, we refer to the RF model using the full variables as global-RFFULL, and the combination of RF 

with FRFS as global-RFFRFS. 

2.5 Local ML-PTFs 150 

The development of local ML-PTFs consists of four steps: 1) use the Mahalanobis distance to calculate the distances of 

predictor variables between each sample to be predicted and all the samples in the database. 2) select k nearest neighbour 

samples to fit a RF model for each unknown sample; 3) predict the BD for each unknown sample using relevant RF models. 

Since the number of nearest neighbour samples (k) is an important parameter in the local model, we evaluated its effect on the 

model performance by testing k from 20 to 700 (20, 40, 60, 80, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 155 

700). 

For clarity, we refer to the local modelling using the full variables as local-RFFULL, and for the combined use of RF and 

variables selected by global-RFFRFS, we refer it as local-RFFRFS. 

2.6 Model evaluation 

Due to the large sample size, single random split is stable compared to k-fold cross-validation or repeated random split (Chen 160 

et al., 2021). Therefore, we used randomly split (80% for calibration and 20% for validation) to assess the model performance 

of T-PTFs and ML-PTFs. The root mean square error (RMSE) and determination coefficient (R2) were used as performance 

indicators on the validation set (Chen et al., 2022). These indices are defined as following Eq. (1) and (2): 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑛𝑛
∑ (𝑂𝑂𝑖𝑖 − 𝑃𝑃𝑖𝑖)2𝑛𝑛
𝑖𝑖=1            (1) 

𝑅𝑅2 = ∑ (𝑂𝑂𝑖𝑖−𝑃𝑃𝑖𝑖)2
𝑛𝑛
𝑖𝑖
∑ (𝑂𝑂𝑖𝑖−𝑂𝑂�)2𝑛𝑛
𝑖𝑖

             (2) 165 

where n represents the number of observations, 𝑂𝑂𝑖𝑖 and 𝑃𝑃𝑖𝑖 are the observed and predicted BD for observation i, and 𝑜̅𝑜 is the 

mean of the observed BD. A good model has a RMSE close to 0, and also a higher R2 close to 1. 
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2.7 The build-up of extended BD and SOC stock datasets in Europe 

Since only part of LUCAS 2015/2018 had soil particle fractions and CaCO3, we used the unique samples ID to link the missing 

soil particle fractions and CaCO3 using LUCAS Soil 2009 for the same sampling sites. This operation is reasonable since soil 170 

particle fractions and CaCO3 will not have a notable change within a decade. The SOC stock (kg m-2) at a depth of 0-20 cm 

for LUCAS Soil 2018 was calculated by the BDfine (g cm-3), CFvolumefraction and SOC content (g kg-1) (Poeplau et al., 2017) as 

Eq. (3). 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆𝑆𝑆 × 𝐵𝐵𝐵𝐵𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 × 20 𝑐𝑐𝑐𝑐 × (1 − 𝐶𝐶𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)/100       (3) 

3 Results 175 

3.1 Statistics of BD and its correlation with predictor variables 

Figure 2 illustrates the histogram of BD and their distribution in a ternary soil texture triangle. The dataset consists of 5,163 

soil samples with BD ranging from 0.20 to 1.89 g cm-3. Approximately half of the soil samples exhibited BD between 0.8 and 

1.4 g cm-3, while less than 10% of the soil samples had BD exceeding 1.4 g cm-3. The selected soil samples covered a wide 

range of soil texture classes, with the exception of clay soils. 180 

 
Figure 2: Histogram of BD (a) and USDA soil texture triangle (b). The point colors shown in the texture triangle correspond to the 

colors present in the left histogram. The percentage of each bin is indicated over the bin in the histogram. 

 

Figure 3 depicts the correlation matrix between BD and the 15 predictor variables. BD exhibited positive correlations with pH 

and MAT, with correlation coefficients (r) greater than 0.2. On the other hand, BD showed notably high negative correlations 185 
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with most of the other predictors. Among these, the most influential negative predictor was SOC (r=-0.62). Additionally, we 

observed BD was negatively correlated to N and AI. 

 
Figure 3: Correlation plot among BD and predictors. 

 190 

3.2 Selection of predictor variables 

Table 3 presents the predictor variables utilized in the RF model for predicting BD. In the global-RFFULL model, 15 predictor 

variables were included, namely clay, silt, sand, pH, SOC, CaCO3, N, K, CEC, AI, PET, Elevation, MAP, MAT, and LC. On 

the other hand, the global-RFFRFS identified a subset of 8 variables by FRFS that were deemed most important for BD prediction. 

These selected predictors, ranked in descending order of importance, were SOC, N, pH, PET, MAP, LC, AI, and MAT. 195 

3.3 Comparison of ML-PTFs and T-PTFs in BD prediction 

In this study, we compared ML-PTFs with four T-PTFs (Fig. 4 and 5). The model performance (R2) of T-PTFs ranged from 

0.40 and 0.45. The global-RF models had higher model performance with R2 around 0.57 for global-RFFULL and global-RFFRFS 

where the later performed slightly better. As for local models, it was clear that the model performance showed an increasing 

trend when the number of neighbour samples increased and some fluctuations were observed after the model performance 200 

reached a plateau. The number of neighbour samples were optimized at 350 and 400 for local-RFFRFS and local-RFFULL, 

respectively. Compared to global modelling, the best local-RFFRFS and local-RFFULL performed slightly better with R2 around 

0.58. 
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Figure 4: Model performance of the eight PTFs. 205 

 

 

Figure 5: The performance of BD by using eight PTFs. 

 

3.4 Comparison of ML-PTFs and T-PTFs in SOC stock calculation 

We investigated how using BD estimated by PTFs impacted the accuracy of SOC stock calculation (Fig. 6). We found that 210 

SOC stock calculation using BD predictions from four T-PTFs resulted in a good performance with RMSE and R2 ranging 

https://doi.org/10.5194/essd-2023-493
Preprint. Discussion started: 18 January 2024
c© Author(s) 2024. CC BY 4.0 License.



11 
 

1.39-1.89 kg m-2 and 0.70-0.84, respectively. Meanwhile, SOC stock calculation using BD predictions from four ML-PTFs 

performed similar (RMSE ranging 1.32-1.36 kg m-2, R2 ranging 0.84-0.85) to the best T-PTF (T-PTF-4, p=0.19-0.29). 

 
Figure 6: The performance of SOC stock prediction by using eight PTFs. 

 215 

3.5 Summary of the extended European BD and SOC stock database 

To enlarge the BD and SOC stock database for the Europe, we refitted best ML-PTF (local-RFFRFS) and T-PTF (T-PTF-4) 

using all the 5,163 soil samples to predict soil samples without BD and then calculated SOC stock, which resulting in 15,389 

and 18,945 soil samples for the extended database respectively (less soil samples had all the required variables for the use of 

local-RFFRFS). As shown in Fig. 7, these extended BD and SOC stock databases are more regularly distributed across EU and 220 

UK compared to the points in Fig. 1. In EU and UK, BD was primarily distributed within 1.0-1.2 g cm-3 (46-47%) while the 

SOCS was mainly comprised between 2 and 4 kg m-2. 
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Figure 7: Spatial distributions of 15,389 soil samples with BD (a) and SOC stock (b) from LUCAS 2018 Soil using local-RFFRFS, and 

18,945 soil samples with BD (c) and SOC stock (d) from LUCAS 2018 Soil using T- PTF-4. 

As shown in Fig. 8, in the database created by local-RFFRFS (15,389 soil samples), the soil samples in 0-20 cm under cropland 225 

had the highest median BD of 1.11 g cm-3, while woodland exhibited the lowest median BD at 0.84 g cm-3. Conversely, 

woodland had the highest median SOC stock at 6.21 kg m-2, while cropland showed the lowest median SOC stock at 3.06 kg 

m-2. As for the database built on T-PTF-4 (18,945 soil samples), cropland also had the highest median BD at 1.14 g cm-3 while 

woodland exhibited the lowest median BD at 0.86 g cm-3. In contrast, the SOC stock under woodland presented the highest 

median SOC stock at 6.96 kg m-2 while cropland had the lowest median SOC stock at 3.17 kg m-2. 230 
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Figure 8: Variations of BD and SOC stock under different land uses using local-RFFRFS and T-PTF-4. 

 

4 Discussion 

4.1 The superiority of ML-PTFs in BD prediction 

In this study, using the LUCAS Soil and 15 predictor variables, we compared the model performance of four commonly used 235 

T-PTFs and four ML-PTFs for BD. Four T-PTFs showed a moderate model performance with R2 of 0.40-0.45, which is close 

to a recent developed Hollis-type T-PTF (R2 of 0.41, Hollis et al., 2012) that refitted by LUCAS Soil 2018 data (De Rosa et 

al., 2023). Our results underscored the efficacy of ML-PTFs in successfully predicting BD at a continental scale, yielding a 

substantial R² ranging from 0.57 to 0.59. It indicates that when adding more relevant predictor variables (e.g., N, pH, PET, 

MAP) in the soil database, ML-PTFs is a better choice for improving BD prediction. Otherwise, T-PTFs are still the best 240 

choice to impute the missing data due to their simplicity (Van Looy et al., 2017). 

In addition to global PTFs that use all the samples, we introduced the local modelling strategy in PTFs which searches similar 

samples first and then builds the relevant PTF for each unknown sample dynamically. Generally, the model performance of 

local PTFs (local-RFFULL and local-RFFRFS) for BD prediction continuously improved with the number of neighbour samples 

increased, and then it reached a plateau when number of neighbour samples reached approximately 350 to 400 (Fig. 4). 245 

Compared to the global PTFs (4,500 soil samples), the size of local PTFs were much smaller (350-400 soil samples) with 

slightly better model performance. Therefore, local PTFs can be an efficient tool for imputing the missing data using a large 

soil database (Padarian et al., 2019; Sanderman et al., 2020). 

Comparing with the commonly used T-PTFs that refitted by our data, the local-FRFRFS model greatly improved model 

performance in BD prediction (ΔR2 around 0.2). Our results suggest that ML-PTFs performed much better for BD prediction 250 

than T-PTFs. This is resulted from the fact that most of ML models are able to handle non-linear and complex relationships 

between the predictor variables and the response variable so as to improve predictions than T-PTFs (Katuwal et al., 2020; 
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Palladino et al., 2022). Meanwhile, the T-PTFs typically rely solely on SOC or SOM for BD prediction. This approach 

maintains model simplicity but overlooks readily available predictor variables such as particle size fractions, MAT and MAP, 

which are also pertinent to BD prediction (Abdelbaki, 2018). Despite of the high diversity in landscapes and climates at a 255 

continental scale, the proposed local-FRFRFS model demonstrated similar or even superior performance compared to the ML-

PTFs conducted at regional and national scales (Table 1). 

4.2 Performance of FRFS and variable importance in BD prediction by ML-PTFs 

We reduced the number of predictor variables in RF model from 15 to 8 using the FRFS algorithm, and the model performance 

of global-RFFRFS for BD using FRFS selected variables was higher than global-RFFULL using full variables (Table 3). Though 260 

the local-RFFRFS (R2 of 0.59) only had marginal superiority over the local-RFFULL model (R2 of 0.58), it facilitated the reduction 

of variables, consequently enhancing prediction efficiency (Fig. 4 and 5). This outcome validates the capacity of FRFS to 

simplify the model complexity while concurrently enhancing predictive accuracy (Xiao et al., 2022, Zhang et al., 2023). Being 

a useful tool for gap-filling the missing data, an ideal PTF require both high parsimony and good fit. If the developed PTF 

needs too many predictors variables, its practical applicability would be limited, as much fewer soil samples have all the 265 

required predictors variables. 

4.3 The build-up of extended BD and SOC stock datasets in Europe 

We used the BD predictions from eight PTFs as input to calculate the SOC stock. The result showed that the model performance 

of SOC stock (R2 of 0.70-0.85) was much higher than those of BD (R2 of 0.40-0.59) (Fig. 5 and 6). It can be explained by the 

interdependence between BD and SOC. For instance, a soil sample with a higher SOC commonly has a larger pore space due 270 

to the greater presence of SOC, leading to a lower BD (Perie and Ouimet, 2008; Chen et al., 2018). As shown in Fig. 6, high 

SOC and BD were always underestimated while the low SOC and BD were overestimated. By multiplying these two negatively 

correlated variables, the predicted SOC stock could be closer to the observed SOC stock as the overestimation (underestimation) 

of BD can counterbalance the underestimation (overestimation) of SOC, resulting in improved model performance than BD. 

It is interesting to note that the model performance of best T-PTFs (T-PTF-4, R2 of 0.84) and ML-PTFs (local-RFFRFS, R2 of 275 

0.85) was quite close in SOC stock prediction. This indicate that the improvement of BD prediction by ML-PTFs did not 

impact the accuracy of SOC stock prediction. Looking into the scatter plots shown in Fig. 5, we can observe that the ML-PTFs 

performed much better than T-PTFs for soil samples with high BD (low SOC) while limited difference was found for soil 

samples with low BD. Compared to T-PTFs, ML-PTFs tended to predict SOC stock better for soil samples with low SOC 

stock (<3 kg cm-2) while similar model performance can be found in soil samples with high SOC stock (>3 kg cm-2), which is 280 

evident in Fig. 5. As a result, the best T-PTFs performed quite similar to the best ML-PTFs when considering the soil samples 

with wide range of SOC stock. Our result indicated that the T-PTFs would be accurate enough to estimate BD which is 

subsequently used for SOC stock calculation due to their simplicity. Otherwise, ML-PTFs are suggested for more accurate BD 
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prediction, especially for regions with low SOC stock such as dry land regions in Spain and Italy (Maestre et al., 2021; De 

Rosa et al., 2023; Wang et al., 2023). 285 

4.4 The build-up of extended BD and SOC stock datasets in Europe 

It is essential to acknowledge that our developed PTFs for BD prediction was constructed based on LUCAS Soil data (0-20 

cm), confining its applicability to topsoil within the EU and UK (Orgiazzi et al., 2022, Panagos et al., 2022). However, the 

potential of their extrapolation capability to other regions or deep soil (>20 cm) necessitates further evaluation. As more soil 

database becomes available from diverse regions as well as deep soil (Lal, 2018; Tautges et al., 2019; Batjes et al., 2020; Yost 290 

et al., 2020;), the proposed methodology can be used to update the PTFs, thereby broadening its area of applicability (Chen et 

al., 2018; Meyer and Pebesma, 2021). 

When using PTFs based BD prediction to detect SOC stock changes, the impact of the accuracy of BD PTFs on the accuracy 

of SOC stock calculation remains unclear since the equivalent soil mass approach also require BD as input (Schrumpf et al., 

2011; Wendt and Hauser, 2013). Therefore, this issue should be investigated in future studies. 295 

5 Data availability 

All the soil data used in this article are available at the following data sources: (1) Land Use and Coverage Area Frame Survey 

Soil (LUCAS Soil) 2009 via https://esdac.jrc.ec.europa.eu/content/lucas-2009-topsoil-data (Panagos et al., 2022), (2) LUCAS 

Soil 2015 via https://esdac.jrc.ec.europa.eu/content/lucas2015-topsoil-data (Fernández-Ugalde et al., 2022), (3) LUCAS Soil 

2018 via https://esdac.jrc.ec.europa.eu/content/lucas-2018-topsoil-data (Panagos et al., 2022), (4) the European soil BD and 300 

SOC stock dataset in this paper is available at https://zenodo.org/records/10211884 (Chen et al., 2023). 

6 Conclusions 

Using the largest extendable soil dataset for Europe, we have developed ML-PTFs for predicting BD across the EU and UK. 

In comparison with four T-PTFs, the best ML-PTFs, namely local-RFFRFS, exhibited superior performance for BD prediction 

with percentage increase in R2 at 31.1-47.5% and percentage decrease in RMSE at 13.6%. When the predicted BD is 305 

subsequently used for SOC stock calculation, we found that the best T-PTFs preformed quite similar to the best ML-PTFs, 

indicating the fact that T-PTFs would be enough for BD prediction when targeting in SOC stock calculation. However, for 

regions with low SOC stock (<3 kg m-2), ML-PTFs are still recommended due to its high accuracy in SOC stock calculation. 

Finally, we established two comprehensive pan-European soil BD and SOC stock databases including 15,389 and 18,945 soil 

samples in LUCAS Soil 2018 using the best ML-PTF and T-PTF, respectively. Our study proposed a potential model to 310 

improve the predictive accuracy of BD, and the resultant BD and SOC stock datasets across the EU and UK enable more 

precise soil hydrological and biological modelling at a continental scale. 
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